Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy.
نویسندگان
چکیده
Homozygous deletion of the survival motor neuron 1 gene (SMN1) causes spinal muscular atrophy (SMA), the most frequent genetic cause of early childhood lethality. In rare instances, however, individuals are asymptomatic despite carrying the same SMN1 mutations as their affected siblings, thereby suggesting the influence of modifier genes. We discovered that unaffected SMN1-deleted females exhibit significantly higher expression of plastin 3 (PLS3) than their SMA-affected counterparts. We demonstrated that PLS3 is important for axonogenesis through increasing the F-actin level. Overexpression of PLS3 rescued the axon length and outgrowth defects associated with SMN down-regulation in motor neurons of SMA mouse embryos and in zebrafish. Our study suggests that defects in axonogenesis are the major cause of SMA, thereby opening new therapeutic options for SMA and similar neuromuscular diseases.
منابع مشابه
O-27: Preimplantation Genetic Diagnosis in Prevention of Genetic Diseases -Diagnostic of Spinal Muscular Atrophy (SMA)
Background: Preimplantation genetic diagnosis - PGD is currently an established procedure allowing genetic research of oocyte or embryo before implantation to the uterus. Spinal muscular atrophy (SMA) is a neurodegenerative disorder, being the second most common lethal autosomal recessive disease in Caucasians, after cystic fibrosis. There are three clinically different types of which type I (W...
متن کاملTherapy Development for Spinal Muscular Atrophy in SMN Independent Targets
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder, leading to progressive muscle weakness, atrophy, and sometimes premature death. SMA is caused by mutation or deletion of the survival motor neuron-1 (SMN1) gene. An effective treatment does not presently exist. Since the severity of the SMA phenotype is inversely correlated with expression levels of SMN, the SMN...
متن کاملPlastin 3 Promotes Motor Neuron Axonal Growth and Extends Survival in a Mouse Model of Spinal Muscular Atrophy
Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease. SMA is caused by mutations in the survival motor neuron gene (SMN1), leading to reduced levels of SMN protein in the CNS. The actin-binding protein plastin 3 (PLS3) has been reported as a modifier for SMA, making it a potential therapeutic target. Here, we show reduced levels of PLS3 protein in the brain and spinal c...
متن کاملSMN1 and NAIP genes deletions in different types of spinal muscular atrophy in Khuzestan province, Iran
Background: Spinal muscular atrophy (SMA) is the second most common lethal autosomal recessive disease. It is a neuromuscular disorder caused by degenerative of lower motor neurons and occasionally bulbar neurons leading to progressive limb paralysis and muscular atrophy. The SMN1 gene is recognized as a SMA causing gene while NAIP has been characterized as a modifying factor for the clinical ...
متن کاملPlastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality.
F-actin bundling plastin 3 (PLS3) is a fully protective modifier of the neuromuscular disease spinal muscular atrophy (SMA), the most common genetic cause of infant death. The generation of a conditional PLS3-over-expressing mouse and its breeding into an SMA background allowed us to decipher the exact biological mechanism underlying PLS3-mediated SMA protection. We show that PLS3 is a key regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 320 5875 شماره
صفحات -
تاریخ انتشار 2008